# Quinoline Alkaloids. Part 24.<sup>1,2</sup> Dimerization of *N*-Methylflindersine<sup>2</sup>

### Michael F. Grundon\* and Mary J. Rutherford

School of Physical Sciences, The New University of Ulster, Coleraine, Northern Ireland

Reaction of 2,6-dihydro-2,2,6-trimethyl-5*H*-pyrano[3,2-*c*]quinolin-5-one (*N*-methylflindersine) with acid gave the dimer (**5**) which was converted into its dehydro derivative (**4**). The biogenesis of the dimeric quinolinone alkaloid, pteledimerine (**3**) is discussed.

A plausible biosynthetic pathway to pteledimerine (3), a dimeric quinolinone alkaloid isolated from *Ptelea trifoliata*,<sup>3</sup> involves acid-catalysed addition of the olefin (1) to *N*-methylflindersine (2) (Scheme 1). The co-occurrence in *P. trifoliata* of the latter alkaloid and of terminal olefins of type (1) provides chemotaxonomic support for this proposal and prompted us to study the reactions of *N*-methylflindersine with acids.



*N*-Methylflindersine was unaffected by hot acetic acid but on being heated under reflux with formic acid or with trifluoroacetic acid a crystalline compound was formed (57--68%)yield). The mass spectrum showed a molecular ion peak at m/z482 (100%) corresponding to a dimer of *N*-methylflindersine of molecular formula  $C_{30}H_{30}N_2O_4$ ; the presence of dihydrodimethyl- and dimethyl-pyranoquinolinone portions was indicated by fragment ions at m/z 242 (9) and 241, cf. (2), respectively. On this basis, the four structures (5)-(8) for the dimer should be considered.

In the high frequency (270 MHz) <sup>1</sup>H n.m.r. spectrum of the dimer, the resonance at 3.58 p.p.m. (1 H, dd) is assigned to a benzylic CH group as in structures (5) or (8); the resonances at 2.24 (1 H, dd) and 2.02 p.p.m. (1 H, dd) for the CH<sub>2</sub> group also favour structures (5) or (8) and are comparable in chemical shift with that recorded <sup>3</sup> ( $\delta$  2.16) for the corresponding methylene

| Carbon   | (5)          | (2)   | (4)                 |
|----------|--------------|-------|---------------------|
| 1a,1a′   | 157.0, 153.6 | 151.9 | 156.0, 154.4        |
| 2        | 81.9         | 79.5  | 2 01 1 70 0         |
| 2′       | 76.9         |       | ٥١.١, ١٥.٥          |
| 3        | 141.9        | 117.0 | 130.8               |
| 3'       | 43.7         |       | 123.1               |
| 4        | 112.5        | 126.8 | 131.2               |
| 4′       | 24.3         |       | 137.9               |
| 4a,4a′   | 116.7, 116.3 | 115.7 | 116.1               |
| 5,5′     | 162.1, 161.0 | 162.9 | 161.1, 160.2        |
| 6a,6a′   | 139.1, 138.9 | 138.3 | 139.2, 139.1        |
| 7,7′     | 113.9, 113.8 | 118.5 | 113.8               |
| 8,8′     | 130.4, 130.3 | 130.9 | 130.4, 128.6        |
| 9,9′     | 123.1        | 122.6 | 123.6, 123.4        |
| 10,10′   | 121.6, 121.4 | 122.0 | 121.5               |
| 10a,10a' | 108.3, 107.7 | 106.7 | 108.0               |
| 11,12    | 29.2, 29.1   | 28.7  | 29.7, 28.2          |
| 11′,12′  | 27.4, 26.7   |       | <i>∫</i> 27.2, 25.1 |
| 13,13′   | 31.9, 29.4   | 29.1  | 29.3                |

Table. <sup>13</sup>C N.m.r. chemical shifts of compounds (2), (4) and (5) (δ values)

group in pteledimerine (3). A one-proton singlet at  $\delta$  6.35 in the n.m.r. spectrum is due to the olefinic proton of the dimethylpyrano ring of the dimer and comparison with the spectra of *N*-methylflindersine and its derivatives in which C-4 protons occur at  $\delta$  6.84—6.65 and C-3 protons at 5.60—5.46<sup>4.5</sup> suggests that the dimer has structure (5) rather than structure (8).

Reaction of the dimer with 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ) in benzene gave a dehydro derivative. The mass spectrum of the new compound showed a molecular ion peak at m/z 480 ( $C_{30}H_{28}N_2O_4$ ) and a prominent fragment ion at m/z 241 representing cleavage of the molecule into Nmethylflindersine (2); the base peak at m/z 226 ( $C_{14}H_{12}NO_2$ ) is attributed to loss of a methyl group from the N-methylflindersine fragment ion. The <sup>1</sup>H n.m.r. spectrum shows that the dehydro compound has the 'unsymmetrical' structure (4) containing a C(3)–C(4') bond. Thus, there are olefinic signals at  $\delta$  6.61 (1 H, s, 4-H) and 5.50 (1 H, s, 3'-H) and two N-methyl resonances are distinguishable at  $\delta$  3.70 and 3.65. The identification of the dehydro derivative confirms structure (5) for the dimer of N-methylflindersine.

The <sup>13</sup>C n.m.r. spectra of the dimer (5) and its dehydro derivative (4) were assigned by comparison with that of *N*methylflindersine (2) (see Table); the spectrum of the latter apparently has not been recorded previously, although the <sup>13</sup>C n.m.r. spectra of related alkaloids with oxygen substituents in the homocyclic ring have been reported.<sup>5</sup> The off-resonance spectrum of the dehydro compound is in accord with the 'unsymmetrical' structure (4) in showing doublets at  $\delta$  131.2 (C-4) and 123.1 (C-3') and separate resonances for 20 of the 30 carbon atoms. The <sup>13</sup>C n.m.r. spectrum of the dimer (5) is more difficult to assign, partly because of the lack of suitable model compounds, and is less useful than the  ${}^{1}H$  n.m.r. spectrum in determining the structure of the compound.

Compound (5) can be regarded as the Markovnikov dimer of *N*-methylflindersine; its formation by the mechanism indicated in Scheme 2 thus supports the proposed analogous route to the alkaloid pteledimerine (Scheme 1).



#### Scheme 2.

## Experimental

<sup>1</sup>H N.m.r. spectra were determined with JEOL FX (270 MHz) and Perkin-Elmer R12 (60 MHz) spectrometers, <sup>13</sup>C

n.m.r. spectra with a JEOL spectrometer (tetramethylsilane as an internal standard), mass spectra with an AE1 MS9 instrument, and i.r. spectra with a Perkin-Elmer 457 spectrometer.

Dimerization of N-Methylflindersine.—(a) A solution of N-methylflindersine (0.2 g) (prepared from N-methyl-4-hydroxyquinolin-2-one and 3-methylbut-2-enal<sup>1</sup>) in formic acid (50 ml) was refluxed for 1 h. Evaporation of the solution, trituration of the residue with light petroleum (b.p. 40—60 °C), then with ether and crystallisation from methanol gave 2,2',3,4',6,6'-hexahydro-2,2,2',2',6,6'-hexamethyl(3,4'-bi-5H-pyrano[3,2-c]-quinolin)-5-one (5) as prisms (0.12 g), m.p. 257—258 °C;  $v_{max}$  (KBr) 1 635 cm<sup>-1</sup> (C=O in quinolin-2-one);  $\delta_{H}$  (CDCl<sub>3</sub>, 270 MHz) 8.01—7.95 (2 H, m, 10-H, 10'-H), 7.57—7.18 (6 H, m, 7-H, 7'-H, 8-H, 8'-H, 9-H, 9'-H), 6.35 (1 H, s, 4-H), 3.62 and 3.615 (6 H, two NMe), 3.58 (1 H, dd, J<sub>AX</sub> 10, J<sub>MX</sub> 7 Hz) (CHCH<sub>2</sub>), 2.24 (1 H, dd, J<sub>AM</sub> 14 Hz, CHCH<sub>2</sub>), 2.02 (1 H, dd, CHCH<sub>2</sub>), 1.96 (3 H, s, Me), 1.62 (3 H, s, Me), 1.54 (3 H, s, Me), and 1.31 (s, 3 H, Me); m/z 482.2212 ( $M^+$ , 100%; C<sub>30</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub> requires 482.2205), 467 ( $M^+$  — Me, 20), 308 ( $M^+$  — C<sub>10</sub>H<sub>8</sub>NO<sub>2</sub>, 23), 295 (62), 294 (3), 242 (39), and 241 (21).

(b) A solution of N-methylflindersine (0.2 g) in trifluoroacetic acid (50 ml) was refluxed for 24 h. Evaporation, followed by trituration of the residue with di-isopropyl ether gave the dimer (0.14 g) (from methanol), m.p. and mixed m.p. 257–258 °C.

*Reaction of the Dimer* (5) *with DDQ.*—A mixture of the dimer (5) (0.15 g), DDQ (0.1 g), and benzene (50 ml) was refluxed for 24 h and filtered. The solution was washed with 2M-sodium hydroxide solution and evaporated. Crystallisation of the residue from methanol gave 2,2,2',2',6,6'-*hexamethyl*-2,2',6,6'*tetrahydro*(3,4'-*bi*-5H-*pyrano*[3,2-*c*]*quinolin*)-5-*one* (4) as yellow prisms (77 mg), m.p. 265—267 °C;  $v_{max}$ .(KBr) 1 640 cm<sup>-1</sup>;  $\delta_{\rm H}$  (CDCl<sub>3</sub>, 60 MHz) 8.02 (2 H, d, J 6 Hz, 10-H, 10'-H), 7.75— 7.07 (6 H, m, 7-H, 7'-H, 8-H, 8'-H, 9-H, 9'-H), 6.61 (1 H, s, 4-H), 5.50 (1 H, s, 3'-H), 3.70 and 3.65 (6 H, two NMe), and 1.55 (12 H, s, four Me); *m/z* 480.2030 (*M*<sup>+</sup>, 8%; C<sub>30</sub>H<sub>28</sub>N<sub>2</sub>O<sub>4</sub> requires 480.2049), 465 (*M*<sup>+</sup> – Me, 4), 241 (62), 240 (57), and 226 (100).

### Acknowledgements

We thank the Department of Education for Northern Ireland for a postgraduate studentship (to M. J. R.).

#### References

- 1 Part 23, M. F. Grundon, D. M. Harrison, M. G. Magee, M. J. Rutherford, and S. A. Surgenor, *Proc. R. Ir. Acad.*, 1983, **83B**, 103.
- 2 Preliminary report: M. F. Grundon, in 'Chemistry and Chemical Taxonomy of the Rutales', ed. P. G. Waterman and M. F. Grundon, Academic Press, New York, 1983, p. 26.
- 3 J. Reisch, I. Mester, K. Szendrei, and J. Korosi, *Tetrahedron Lett.*, 1978, 3687.
- 4 E.g. M. O. Abe and D. A. H. Taylor, *Phytochemistry*, 1971, 10, 1167; J. F. Ayafor, B. L. Sondengam, and B. Ngadjui, *Tetrahedron Lett.*, 1980, 21, 3293.
- 5 F. R. Stermitz and I. A. Sharifi, *Phytochemistry*, 1977, 16, 2003; S. A. Halid and P. G. Waterman, *ibid.*, 1981, 20, 2761.

Received 18th June 1984; Paper 4/1024